Cellular prion protein is released on exosomes from activated platelets.
نویسندگان
چکیده
Cellular prion protein (PrP(C)) is a glycophosphatidylinositol (GPI)-anchored protein, of unknown function, found in a number of tissues throughout the body, including several blood components of which platelets constitute the largest reservoir in humans. It is widely believed that a misfolded, protease-resistant form of PrP(C), PrP(Sc), is responsible for the transmissible spongiform encephalopathy (TSE) group of fatal neurodegenerative diseases. Although the pathogenesis of TSEs is poorly understood, it is known that PrP(C) must be present in order for the disease to progress; thus, it is important to determine the physiologic function of PrP(C). Resolving the location of PrP(C) in blood will provide valuable clues as to its function. PrP(C) was previously shown to be on the alpha granule membrane of resting platelets. In the current study platelet activation led to the transient expression of PrP(C) on the platelet surface and its subsequent release on both microvesicles and exosomes. The presence of PrP(C) on platelet-derived exosomes suggests a possible mechanism for PrP(C) transport in blood and for cell-to-cell transmission.
منابع مشابه
Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells
Prion diseases are transmissible neurodegenerative disorders affecting both humans and animals. The cellular prion protein, PrP(C), and the abnormal infectious form, PrP(Sc), are found associated with exosomes, which are small 50-130 nm vesicles released from cells. Exosomes also contain microRNAs (miRNAs), a class of non-coding RNA, and have been utilized to identify miRNA signatures for diagn...
متن کاملCellular prion protein released on exosomes from macrophages binds to Hsp70.
Prion diseases are infectious and fatal neurodegenerative disorders. The cellular prion protein (PrP(C)) converting into misfolded isoform of prion protein (PrP(Sc)) is responsible for prion disease infection. Immune system plays an important role in facilitating the spread of prion infections from the periphery to the central nervous system. Macrophages were considered associated with the tran...
متن کاملExosomes and the Prion Protein: More than One Truth
Exosomes are involved in the progression of neurodegenerative diseases. The cellular prion protein (PrPC) is highly expressed on exosomes. In neurodegenerative diseases, PrPC has at least two functions: It is the substrate for the generation of pathological prion protein (PrPSc), a key player in the pathophysiology of prion diseases. On the other hand, it binds neurotoxic amyloid-beta (Aß) olig...
متن کاملCellular prion protein in blood platelets associates with both lipid rafts and the cytoskeleton.
The recently shown transmissibility of variant Creutzfeldt-Jakob disease (vCJD) by blood transfusion emphasises the need for better understanding of the cellular prion protein (PrPc) in blood. A substantial amount of cell-associated PrPc in blood resides in platelets. Platelet activation leads to up-regulation of PrPc on the platelet surface and its release on exosomes and microparticles. The s...
متن کاملPrions and retroviruses: an endosomal rendezvous?
The past two decades have seen the emergence of endocytic pathways as highly regulated systems for the sorting, selective degradation and recycling of nearly all cell-surface membrane proteins. At the centre of these pathways are complex endosomal structures known as multivesicular bodies (MVBs) that house intraluminal vesicles (ILVs) formed by invagination and budding from the limiting membran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 107 10 شماره
صفحات -
تاریخ انتشار 2006